The Value of Time in Deepwater Projects

Presented by Roy Robinson
Repsol Services USA

For
The Marine Technology Society Lunch
August 23, 2007
RepsolYPF is an integrated oil and gas company that is one of the largest refiners in Europe, a world leader in LNG, and has a significant presence in more than 38 countries on 5 continents. RepsolYPF currently has active offshore interests or operations in Trinidad & Tobago, Brazil, the Gulf of Mexico, Spain, and Chile.
• RepsolYPF is reentering the offshore development market, and will be drilling a continuous series of offshore exploration wells over the next three years starting with the Stormy Monday (GC 313) prospect in the Gulf of Mexico in Q4 of 2007.

• Of particular importance to the company is the experience that RepsolYPF has gained in being partners in the BHP lead Neptune, Shenzi, and Genghis Kahn developments in the Gulf of Mexico.

• It is RepsolYPF’s intent to build upon the experience we have gained and combine it with our own expertise to maximize the value we derive from any discoveries that result from our current exploration portfolio.

• To that end we have been examining the effects of early production schemes on projects.
The Value of Time in Deepwater Projects

- Methodology
- Design Basis and Assumptions
- Cost Estimate and Base Schedule
- Calculating Time Impacts on NPV (Cost value of Time)
- Sources of Project Delay
- Methods of Expediting a Project
- Conclusions & Recommendations
The objective of this presentation is to illustrate the true impact that early production/accelerated schedules can have on a project’s value.

To achieve this a “typical” 300mmbbl field development was modeled, and the resulting cash flows with and without an early production system were generated.

The result (that early is better) is neither surprising nor noteworthy. The dual aspects of risk reduction and the level of increase in value given current market conditions is.
Design Basis and Key Assumptions

- Water depth is 1000m
- Field Size 300mmbbl w/300bcf associated gas (350mmboe)
- Production is by a Semi-TLP, 100 kbopd capacity
- GOM Field with a 100km export pipeline system
- An early production FPSO/FPU with DP, 50 kbopd
- Export pipeline system can be installed 1 year prior to production facility being available
- No tariffs, taxes or other fees are included
Design Basis and Assumptions

System modeled using Questor v9.3 software from IHS
## Cost Estimate and Base Schedule

<table>
<thead>
<tr>
<th>ITEM</th>
<th>COST ($MM)</th>
<th>DURATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exploration</td>
<td>$150</td>
<td>12 months</td>
</tr>
<tr>
<td>Drilling</td>
<td>$1113</td>
<td>68 months</td>
</tr>
<tr>
<td>Facilities</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Subsea</td>
<td>$215</td>
<td>24 months</td>
</tr>
<tr>
<td>• Pipelines</td>
<td>$150</td>
<td>24 months</td>
</tr>
<tr>
<td>• Topsides</td>
<td>$338</td>
<td>36 months</td>
</tr>
<tr>
<td>• Hull</td>
<td>$280</td>
<td>36 months</td>
</tr>
<tr>
<td>First Oil</td>
<td></td>
<td>@32 months</td>
</tr>
<tr>
<td>Facilities timed to end concurrently</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FPU/FPSO</td>
<td>$145/year</td>
<td>Assumed leased</td>
</tr>
</tbody>
</table>
Calculating Time Impacts on NPV

• For 1 year delay in the start of production, all else being equal and an NPV rate of 15%, the project realizes a reduction in NPV of 20%.

• This ignores the reality that on top of the production delay, delays usually have direct associated costs.

• For a 1 year acceleration of the first oil date, and including the estimated additional cost of an early production system, the NPV of the project increases 17%.

For the purposed of this presentation only direct project costs (CAPEX and OPEX) were included, and secondary considerations (Taxes, Tariffs, and Royalties) were not.
Early Production Effect On NPV Risk

Lifecycle Cost are defined as the sum of all project costs from Exploration to Abandonment, including OPEX divided by the number of barrel equivalents of oil.
Effect of Pre-purchasing on CAPEX Estimation

Below is a typical CAPEX risk profile. Pre-purchasing & contracting flattens the curve and reduces the amount of uncertainty, but does increase the base estimate CAPEX.

Based on AACE RP No. 18R-97 Cost Estimate Classification System - As Applied in Engineering, Procurement and Construction for the Process Industries
**Downside Risk Reduction**

- Downside Risk Reduction

### Graph

- **Y-axis**: Percent Increase in NPV Compared to Base Case
- **X-axis**: Actual Reserves as Percent of Expected Reserves

NPV Rate used is 15%.
Effect of Project Size & Discount Rate

At an NPV discount rate of 15%, the NPV increase for early production is as shown:

- Project = 350 MBOE, 2.250 B$
  - Full field, 1 year earlier
  - NPV +$500M

- Project = 25 MBOE, 0.300 B$
  - Tie-Back, 6 months earlier
  - NPV +$7M
Sources of Project Delay

- Internally Controlled
  - Corporate reviews and gates
  - Poor Quality Control processes
  - Poorly trained or unqualified staff
  - Long lead items
  - Engineering errors
  - Poor scheduling

- Externally Controlled
  - Permitting & Licensing
  - Inspections & Certifications
  - Partners’ requirements (if JV)
  - Contractors’ errors or problems

- Random/Uncontrolled
  - Weather & currents
  - Force Majeure events
  - Third party accidents
Methods of Expediting a Project

- Faster exploration results evaluation
- Minimizing oversight delays
- Early procurement of long lead items
- Over Design & Quality Control
- Repetitive Design (learning curve)
- Use of Early Production Systems
The Downside

• Pre-purchasing Long Lead Items
  • Requires commitment of more funds early
  • Requires a large enough portfolio of potential projects to ensure use of equipment (mitigated by ability to re-sell in current market)
• Currently there are few suitable early production vessels
  • The model assumed a suitable vessel could be leased
  • Construction of such a vessel from scratch would require the same amount of time as the production facility.........the first time.
• Requires detachable riser system or two separate installations.
• Impact is more significant on larger projects. Increased cost versus risk should be examined case by case.
• The market conditions have changed radically in the last 5 years.

• This same 300mmbl model run with representative numbers from 2002 would show only a 6% increase in NPV.

• As total NPV was considerably lower the total increase in project value would only have been $55MM in 2002.

• In 2007 a 17% increase in NPV represents an increase in project value of $500MM.
Change in Economic Environment

Drill Ship Day Rate

- Trend line based on Riglogix current drillship contracts – 10 kft capability.

Costs have been going up..........

......but so has the oil price........

Change in USA Oil Price

- Dollar Denominated Contracts, data from EIA.
Conclusions and Recommendations

• Use of pre-purchasing and/or early production systems will significantly increase the NPV of projects more than it has in past market conditions.

• While pre-purchasing increases the base cost estimate for a project it reduces the cost risk correspondingly.

• The earlier production can be brought online the more resilient the project NPV will to unexpected lifecycle cost increases.

• There is a need in the market for more pre-packaged early production systems and widely applicable subsea hardware.