Complexities of a well control response in a marine environment

Joe Dean Thompson, Sr. Vice President
Wild Well

Alistair Gill, Vice President
Prospect Flow Solutions
Blowouts!

• What is a Blowout?
 – The uncontrolled flow of fluid or gas from a well bore.

• What is the Cause of a Blowout?
 – An unrecognized or uncontrolled kick.
A Well Control Incident

Loss of well control in a marine environment adds a different level of complexities to a well control response.
Complexities

• Does it involve a fixed bottom asset?
• A floating asset?
• Or none of the above?
Complexities

If the incident involves a subsea well, the complexities are compounded.

• How are we going to access the wellbore?
• How are we going to install a capping device?
• Can the pollution be addressed at the source?
• Is capping equipment readily available?
Complexities

- Are there environmental issues?
- Will the surface intervention have to be completed in harmony with an oil spill response?
Complexities

- When a well control incident is in a marine environment, it is most important to immediately start planning and developing a relief well.
- Be prepared should the surface intervention efforts fail.
• Timing is of the essence when responding to a marine well control event.
• The responses (well control, oil spill, relief well, etc.) must be simultaneous and worked in a closely coordinated effort for maximum efficiencies.
• To do so from a well control response standpoint, the response must be supported and developed using advanced engineering tactics.
• Engineered actions and engineered contingencies must be included in every step of the response.
Prospect planning support process

Each stage of the response plan is supported

28 August 2014
Mobilisation – sea-fastening

28 August 2014
Mobilisation – sea-fastening

Excel calculations

Linked to CAD

Quick turnaround

28 August 2014
Exclusion zone ID – for SIMOPS

28 August 2014
Subsea dispersion – Zone 1
Subsea dispersion – Zone 2

\[D_{b\text{ max}} \propto f(u_0, g, U_c) \]

\[D_{b\text{ min}} \propto f(\rho, \sigma, \varepsilon) \]

28 August 2014
Subsea dispersion – Zone 2

Dispersant effects?

28 August 2014
JOINT INDUSTRY PROJECT FOR ADVANCED MODELLING IN SUBSEA GAS RELEASE
JIP Members

- The project is organized as a JIP and supported by Wild Well Control, Shell, BP, Statoil, Total, Gassco, DNV, Safetec and the PSA
Experimental Campaign

Full Scale Test - Location - Høvringen, outside Trondheim, May 2014
Experimental Campaign

- 30 m water depth
- Gas Rate 5Kg/s 21mmscfd
- Video 1Kg/s

28 August 2014
Zone 3 - gas dispersion
Zone 3 - gas dispersion

28 August 2014
CAN WE CAP IT?
Will surface boil be a problem?

Wellhead to upstream extend of current reversal: 8 m

28 August 2014
Capping analysis – how it works

Fluid-structure Interaction
6 DOF model

Current Direction

Gravity

Plume jet forces

28 August 2014
Capping stack landing

28 August 2014
OTHER CONSIDERATIONS
Debris clearance

28 August 2014
Radiant heat

28 August 2014
CAN WE KILL IT?
Can we kill the well?

- Killing the well usually involves pumping heavy mud into the wellbore – WWC use Olga ABC to model well kill
- Mud weight requirements mean the fluid is extremely erosive
- Can we pump enough mud for long enough without damaging the equipment used?
- Is erosion a major concern?
Erosion prediction

- API 14E
- DNV RP O501
- CFD

\[v_e = \frac{c}{\sqrt{\rho m}} \]

Increasing complexity

28 August 2014
Erosion models

Angle α

28 August 2014
Erosion prediction

\[e_r = C(BH)^{-0.59} F_s V_p^n f(\alpha) \]

28 August 2014
Erosion validation – 5D bend

Normalized Erosion Rate

Angle round bend (Degrees)

0 10 20 30 40 50 60 70 80 90 100

Normalized Erosion Rate

Angle round bend (Degrees)

Test

CFD

28 August 2014
Erosion risks

28 August 2014
Erosion risks

- Initial particle trajectory
- Particle trajectory for eroded wall

28 August 2014
Practice makes perfect!
ANY QUESTIONS
Thank you.

Please visit wildwell.com