Delay P&A Through Improvement in Oil Cut for Mature Offshore Facilities

Michael R. Pavia, PhD
Chief Technology Officer

April 28, 2016
Why A Biological Process for Enhanced Oil Recovery?

Improving tertiary recovery; making waterflooding more efficient

Tailored for offshore:
- Higher rate, more recovery
- Limited Opex, Capex, no risk
- Small footprint, simple process
Large returns in declining fields

Rapid adoption in fields currently under seawater flood

Effective over large injector-producer distances and in large, complex zones
Large returns in declining fields

Rapid adoption in fields currently under seawater flood

Effective over large injector-producer distances and in large, complex zones
Offshore P&A costs are very large – $100+ MM

Decisions driven by current and future (unknown) oil prices

Delaying P&A is always better, if economic production can be maintained

Cumulative benefit (NPV10) of delaying a $100MM P&A with a 10% return on capital
Candidate fields: near the economic limit of waterflooding

Multiple EOR methods with different CapEx and R&D costs

Biological EOR - low complexity, low cost option

<table>
<thead>
<tr>
<th>Method</th>
<th>Pre-Project R&D</th>
<th>Capital Expenditures</th>
<th>Time to implementation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemical EOR</td>
<td>Complex, Iterative</td>
<td>High</td>
<td>Years</td>
</tr>
<tr>
<td>Gas Injection</td>
<td>Straightforward, Rapid</td>
<td>High</td>
<td>Years</td>
</tr>
<tr>
<td>Biological EOR</td>
<td>Straightforward, Rapid</td>
<td>Low</td>
<td>Months</td>
</tr>
</tbody>
</table>
AERO: Activated Environment for Recovery of Oil

- Holistic approach to microbial stimulation
- Low-dose chemicals (nutrients) injected
- Enables growth of seawater and reservoir microbes on residual oil
- Microbial activity improves oil mobility and flooding

Diagram:
- Naturally occurring microbes
- Added Nutrients
- Growth & Disrupted oil-water IFT
- Residual oil
- Improved Sweep & Oil Mobility
1. Microbes Grow on Residual Oil
 - Injected nutrients enable the microbes in the reservoir to grow on the oil in the reservoir.

2. Trapped oil is freed
 - Growth of microbes on the residual oil releases additional energy and pressure to more efficiently unlock and drive oil to producing wellbores.
 - More oil flows to the surface
Biological surfactants reducing interfacial tension

SPE 10924 (Kowalewski)
Selective plugging of high-perm zones

- Heterogeneous reservoirs
- Communication between layers
AERO Field Result - Canadian Project

Graph showing the production data over time. The x-axis represents months relative to AERO start, and the y-axis represents the average BOPD. The graph compares Pre-AERO Production, AERO Production, and Pre-AERO Decline.
Statoil’s Norne FPSO was the first offshore biological EOR project. Treated blocks had long water breakthrough time. Overall very low WOR consistent with high sweep efficiency through >100 MMboe.

Adapted from www.force.org (http://goo.gl/8tLbkH)
7-year Statoil-Glori Energy collaboration resulted in development of Glori’s AERO (Activated Environment for Recovery of Oil) Technology

Yielded data from 15 on-shore AERO projects

No negative outcomes – corrosion, MIC and production chemistry all nominal

Two projects were of particular interest with respect to large and complex offshore fields
 Field C – complex, layered geology with long inter-well distances
 Field X – long reservoir cycle time, moderate inter-well distances
Reservoir Parameters
Medium to light crude
Layered sandstone system, 200-1300 mD permeability
Four main zones and 16 reservoir units.
Net thickness 25 to 120 feet

AERO
6 month pilot yielded up to 130 BOPD, a 40% increase in the targeted area
Field returned to original decline after nutrient injection stopped
Field C – Individual Well Results

8 definitive responding wells – 66 BOPD uplift
Responding wells were over 1000 feet away and up-dip of nutrient injection
Response magnitude and timing unrelated to distance
Reservoir Parameters
26 °API gravity oil
1400 mD, 23% porosity sandstone
Net pay 12 feet
800 feet subsea in depth

Water flood
First water injection in 1993
0.13 PV per year average

AERO
28 months injection
Oil rate increased >4-fold
No new decline
Dramatic improvement in two wells
Producers L-H and W
responsible for 80% of field uplift
Water/oil ratios improved 2 and 3 fold, respectively

Rapid response, independent of transit time
Distinct uplift after 5 months
Injector-producer distances >1300 ft
Only 0.03 pore volume of injection prior to response
Reservoir compatibility
- Sandstone, >75 mD
- Hydraulic connectivity
- Down-dip injection

Fluid Compatibility
- Oil >20 °API Gravity
- Low-organic content injection water
- Bio-compatible temperatures
- Microbes that grow on oil

![Graph showing microbial metabolic activity over days elapsed for different salinities with and without oil](chart)
Seawater injection → Simple project development
Microbes already present
Unlimited volume of bio-compatible injection water
Reservoir and production analyses use existing data

Minimal CapEx
Injection access point and pump
Nutrient storage (1 bbl nutrient per 4000 bbl injected)

Screening and project design: 2-4 months
1. Seawater Pump
2. Coarse Strainer
3. Ultra filtration
4. SRU Membranes
5. Vacuum deaerator
6. Nutrient Addition
Injection Skid Overview

- Standardized units
- Containerized
- Skid mounted
Controls and Monitoring

- SCADA System
- Satellite/Cellular Signaling
- Remote monitoring and control
Nutrient Manufacturing

- Onshore blender
- Offshore blending (FPSO)
- IBC storage vessels
- ISO Container
Quality Control and Assurance

Ensure water quality, nutrient concentration, oxygen concentration, etc.
Monitor impact on field water injection, water cut, and oil production, etc.

Pump (Variable frequency drive (VFD), or programmable logic controller (PLC))

<table>
<thead>
<tr>
<th>Onshore</th>
<th>Offshore</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Water quality</td>
<td>- Pressure, mass flow meters</td>
</tr>
<tr>
<td>- Production monitoring</td>
<td>- SCADA</td>
</tr>
<tr>
<td></td>
<td>- Remote monitoring and control</td>
</tr>
</tbody>
</table>
Delaying P&A with Glori’s AERO Technology

Compatible with low well-density offshore fields
 Large injector-producer distances
 Low injection rates relative to reservoir volume
 Complex reservoirs

Benefits realized rapidly
 Implementation process is simple, rapid
 2-6 month response, depending on nutrient applied
 Quantitative response in 12 months

Uplift and/or reduced decline yields large returns
 Delay P&A
 Produce existing asset(s)

AERO is now available for mature offshore fields
Delay P&A Through Improvement in Oil Cut for Mature Offshore Facilities

4315 South Drive
Houston, TX 77053
Phone: 713.237.8880
info@GloriEnergy.com